

Please note that the Physics question pattern has changed for JEST 2026.
Part A: 10 multiple choice questions each carrying 1 mark
Part B: 20 multiple choice questions each carrying +3 marks
Part C: 10 numericals: 3 marks
For details, please visit the FAQ page at <https://www.jest.org.in>.

JEST-2026 Sample Question Paper

Part A: 1-Mark MCQ

1. A particle is moving under the force field given by $\vec{F} = k\vec{r}$, where k is a positive constant. The difference in work done (in arbitrary units) if the particle moves from point A $(-1, 0, 0)$ to point B $(1, 0, 0)$ following semi-circular paths in the clockwise and anti-clockwise directions on the X-Y plane will be
 - A. 0
 - B. $2\pi k$
 - C. $\frac{1}{2}\pi k$
 - D. πk
2. The Fraunhofer diffraction pattern formed by an elliptical aperture will be
 - A. elliptical with the semi-major axis perpendicular to that of the aperture.
 - B. circular.
 - C. elliptical with the semi-major axis parallel to that of the aperture.
 - D. hyperbolic.
3. For a relativistic point particle the momentum is $\vec{p} = \frac{m_0\vec{v}}{\sqrt{1-v^2/c^2}}$, where \vec{v} is its velocity as measured by an inertial observer. Then the acceleration is in the same direction as the applied force
 - A. only when force is parallel or perpendicular to the velocity.
 - B. always.
 - C. never.
 - D. only when force is neither parallel nor perpendicular to the velocity.
4. For a plane electromagnetic wave propagating with wave vector \vec{k} in a homogeneous and isotropic medium, which of the following holds?
 - A. $\vec{E} \cdot \vec{B} = 0$
 - B. $\vec{E} \times \vec{B} = \vec{0}$
 - C. $\vec{k} \cdot (\vec{E} \times \vec{B}) = 0$
 - D. None of the others.

5. Given the differential operator: $D \equiv \frac{d^2}{dx^2} + P \frac{d}{dx} + Q$, where P and Q are constants, what is the eigenvalue corresponding to the eigenfunction $y = e^x$?

- A. $(1 + P + Q)$
- B. $(P + Q)$
- C. $(1 + Q)$
- D. $(P + Q - 1)$

6. Suppose the mass of the Sun is reduced to half of its original value very slowly, e.g., over a billion years, what will be the effect of this on the Earth's orbit?

- A. Remains elliptical, but the mean radius changes.
- B. Remains elliptical with the same mean radius.
- C. Orbit remains closed but not elliptical.
- D. The Earth flies away.

7. Consider the time-independent Schrödinger equation with a real potential and suppose $\psi(x)$ is a solution of this equation. Which of the following is true?

- A. ψ^* is a solution of the same equation.
- B. ψ^* is never a solution of the same equation.
- C. ψ^* is a solution of the same equation only if the potential is symmetric about $x = 0$.
- D. ψ^* is a solution of the same equation only if the potential vanishes at infinity.

8. Consider a quantum system that is evolved sequentially with a finite sequence of Hermitian Hamiltonians $\{H_0, H_1, \dots, H_r\}$. The full evolution operator is written as:

$$U = U_n U_{n-1} \dots U_1 U_0 = e^{-i\mathcal{H}}, \text{ with } U_j = e^{-iH_j} \text{ and, } j = 0, 1, \dots, n$$

Then U is

- A. a Hermitian operator.
- B. a unitary operator.
- C. undefined.
- D. None of the others.

9. Consider two identical charged balls, each of mass m and charge q . One of them is initially held fixed on a frictionless insulating horizontal surface and the other is carefully placed above the first one at a height h from the surface, such that the gravitational force on it is balanced by the Coulomb repulsion. The upper ball is now shifted horizontally by a distance d ($d \ll h$) to the right and then both the balls are released. Which way will the balls move immediately after this?

- A. ball on the surface moves towards left, ball above moves downwards.
- B. both balls remain static at their new positions.
- C. ball on the surface moves towards right and ball above moves upwards.
- D. both balls oscillate around their original positions.

10. Consider the standard notation of discrete finite groups with \mathbb{Z}_n corresponding to the rotation by $2\pi/n$ about a given axis, S_n corresponding to the permutation group of the set S having n elements, i.e. $S = \{1, 2, 3, \dots, n\}$, and the Dihedral group D_n corresponding to the reflection and rotation symmetries of a regular polygon with n number of sides. Which of the following is the smallest non-abelian group?

- A. S_3
- B. \mathbb{Z}_3
- C. D_4
- D. S_4

Part B: 3-mark MCQ

1. Consider a 2×2 matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ which has eigenvalues $\lambda_1 = \frac{1+\sqrt{5}}{2}$ and $\lambda_2 = \frac{1-\sqrt{5}}{2}$. For any natural number n which of the following is correct ?

A. $A^n = \frac{1}{\sqrt{5}} \begin{bmatrix} \lambda_1^{n-1} - \lambda_2^{n-1} & \lambda_1^n - \lambda_2^n \\ \lambda_1^n - \lambda_2^n & \lambda_1^{n+1} - \lambda_2^{n+1} \end{bmatrix}$

B. $A^n = \frac{1}{\sqrt{5}} \begin{bmatrix} \lambda_1^{n-1} - \lambda_2^{n-1} & \lambda_1^n + \lambda_2^n \\ \lambda_1^n + \lambda_2^n & \lambda_1^{n+1} - \lambda_2^{n+1} \end{bmatrix}$

C. $A^n = \frac{1}{\sqrt{5}} \begin{bmatrix} \lambda_1^{n-1} + \lambda_2^{n-1} & \lambda_1^n - \lambda_2^n \\ \lambda_1^n - \lambda_2^n & \lambda_1^{n+1} + \lambda_2^{n+1} \end{bmatrix}$

D. $A^n = \frac{1}{\sqrt{5}} \begin{bmatrix} \lambda_1^{n-1} + \lambda_2^{n-1} & \lambda_1^n + \lambda_2^n \\ \lambda_1^n + \lambda_2^n & \lambda_1^{n+1} + \lambda_2^{n+1} \end{bmatrix}$

2. A quantum mechanical system is spanned by the eigenstates $|a_1\rangle$ and $|a_2\rangle$ of a Hermitian operator A with eigenvalues a_1 and a_2 respectively. If there is no degeneracy, what is the expectation value of the operator $(A - a_1)(A - a_2)$ in the state $\frac{|a_1\rangle + |a_2\rangle}{\sqrt{2}}$?

A. 0

B. 1

C. $(a_2 - a_1)(a_1 - a_2)$

D. $\frac{(a_2 - a_1)(a_1 - a_2)}{2}$

3. Three observers successively measure the spin of a given proton along z-axis, x-axis and again z-axis, respectively. The first observer finds the spin projection to be $+\frac{1}{2}$. Assuming no other factors, what is the probability that the third observer finds the spin projection to be $-\frac{1}{2}$?

A. 0.5

B. 1

C. 0

D. None of the others

4. A capacitor with capacitance C is connected in series with a resistor of resistance R and an ideal DC source with voltage V_S . At one instant during the charging of the capacitor if the resistor is replaced by a wire of zero resistance, which of the following statements is true?

- The capacitor immediately attains the source voltage V_S .
- The voltage across the capacitor will drop immediately to zero.
- The voltage across the capacitor will increase slowly.
- None of the others is true.

5. Calculate the partition function for two indistinguishable bosonic particles at a temperature T , which can be distributed in two single-particle energy levels ϵ_1 and ϵ_2 . Consider $\beta = \frac{1}{k_B T}$.

- $e^{-2\beta\epsilon_1} + e^{-2\beta\epsilon_2} + e^{-\beta(\epsilon_1+\epsilon_2)}$
- $\frac{1}{2!} (e^{-\beta\epsilon_1} + e^{-\beta\epsilon_2})^2$
- $(e^{-\beta\epsilon_1} + e^{-\beta\epsilon_2})^2$
- $e^{-2\beta\epsilon_1} + e^{-2\beta\epsilon_2} + e^{-2\beta(\epsilon_1+\epsilon_2)}$

6. For a particle in a one-dimensional box of width L , the uncertainty Δp in momentum in the n -th eigenstate of energy for large n is

- $\frac{n\pi\hbar}{L}$
- $\frac{2n\pi\hbar}{L}$
- $\frac{2n\hbar}{L}$
- $\frac{\hbar}{n\pi L}$

7. Consider a circular disk of radius R and mass M in the X-Y plane, with a surface mass density $\sigma(r) = \sigma_0 e^{-r^2/a^2}$, where r is the distance from the center of the disk. What is the moment of inertia around the Z-axis through the center of the disk? [consider $R \gg a$]

- Ma^2
- $\frac{1}{3}Ma^2$
- $6Ma^2$
- $\frac{1}{2}Ma^2$

8. For a one-dimensional simple harmonic oscillator with mass m and angular frequency ω , consider a perturbation λx^4 in the Hamiltonian ($\lambda > 0$). What is the lowest order correction to the ground state energy?

[The position operator expressed in terms of the raising and lowering operators is $\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} (\hat{a} + \hat{a}^\dagger)$.]

A. $\frac{3\lambda}{4} \left(\frac{\hbar}{m\omega}\right)^2$

B. $\frac{3\lambda}{2} \left(\frac{\hbar}{m\omega}\right)^2$

C. $\frac{5\lambda}{2} \left(\frac{\hbar}{m\omega}\right)^2$

D. $\frac{5\lambda}{4} \left(\frac{\hbar}{m\omega}\right)^2$

9. The time averaged electrostatic potential of a neutral H-atom is given by

$$\Phi(\vec{r}) = \frac{q}{4\pi\epsilon_0} \frac{e^{-\alpha r}}{r} \left(1 + \frac{\alpha r}{2}\right)$$

The classical charge distribution corresponding to this is

A. $-\frac{q}{8\pi} \alpha^3 e^{-\alpha r} + q\delta^3(\vec{r})$

B. $qe^{-\alpha r} \left(1 + \frac{\alpha r}{2}\right)$

C. $-\frac{q}{8\pi} \alpha^3 e^{-\alpha r}$

D. $\frac{q}{8\pi} \alpha^3 e^{-\alpha r} \left(1 + \frac{\alpha r}{2}\right) - q\delta^3(\vec{r})$

10. Given an isolated thermodynamic system with a total energy E , total volume V and total number of particles N , the condition for stable thermal equilibrium, in terms of its entropy S under small changes ΔE and ΔV , is given by

A. $S(E + \Delta E, V + \Delta V, N) + S(E - \Delta E, V - \Delta V, N) - 2S(E, V, N) < 0$

B. $S(E + \Delta E, V + \Delta V, N) + S(E - \Delta E, V - \Delta V, N) + 2S(E, V, N) < 0$

C. $-S(E + \Delta E, V + \Delta V, N) + S(E - \Delta E, V - \Delta V, N) - 2S(E, V, N) < 0$

D. $S(E + \Delta E, V + \Delta V, N) - S(E - \Delta E, V - \Delta V, N) - 2S(E, V, N) < 0$

11. Consider the group S_4 corresponding to the permutations of the set S having four elements, say $S = \{1, 2, 3, 4\}$. How many non-identity self-inverse (i.e. order 2) elements does S_4 have?

- A. 9
- B. 6
- C. 8
- D. 12

12. The volume of a nucleus, treated as a Fermi gas in three-dimensional space, is proportional to the number of fermions present in it. If the total number of fermions is changed from N to $4N$, the total energy of the system will

- A. be doubled.
- B. remain the same.
- C. be 4 times its original value.
- D. be half of its original value.

13. Consider a two-dimensional Fermi gas at 0 K with Fermi energy ϵ_F . The average energy per particle of this gas is:

- A. $\frac{\epsilon_F}{2}$
- B. $\frac{3\epsilon_F}{5}$
- C. $\frac{\epsilon_F}{3}$
- D. $\frac{\epsilon_F}{4}$

14. A block, suspended from a massless spring, is fully immersed in a liquid contained in a reservoir. What is the time period of small oscillations of the block?

[Given: Mass of the block m , density of the block ρ_b , natural length of the spring L , spring constant k , acceleration due to gravity g , density of the liquid ρ_l , damping coefficient of the liquid i.e., damping per unit mass per unit velocity γ .]

A. $2\pi\sqrt{\frac{1}{k/m - \gamma^2/4}}$

B. $2\pi\sqrt{\frac{1}{k/m + \gamma^2/4}}$

C. $2\pi\sqrt{\frac{L}{(1 - \rho_l/\rho_b)g}}$

D. $2\pi\sqrt{\frac{m}{k}}$

15. A circular loop of radius a , carrying a current I in an anti-clockwise direction (when seen downwards from the positive Z axis), is placed on the X-Y plane centred at the origin. What is the magnetic field on the X-Y plane at $r \gg a$?

A. $\frac{\mu_0 I}{4} \frac{a^2}{r^3}$ in the negative Z direction

B. $\frac{\mu_0 I}{4\pi} \frac{a^2}{r^3}$ in the positive Z direction

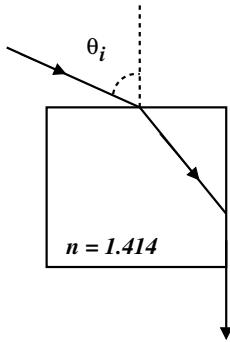
C. 0

D. $\frac{\mu_0 I}{4} \frac{a^2}{r^3} \hat{r}$

16. Evaluate $\vec{\nabla} \cdot (r^4 \vec{r})$, where \vec{r} represents a three dimensional position vector.

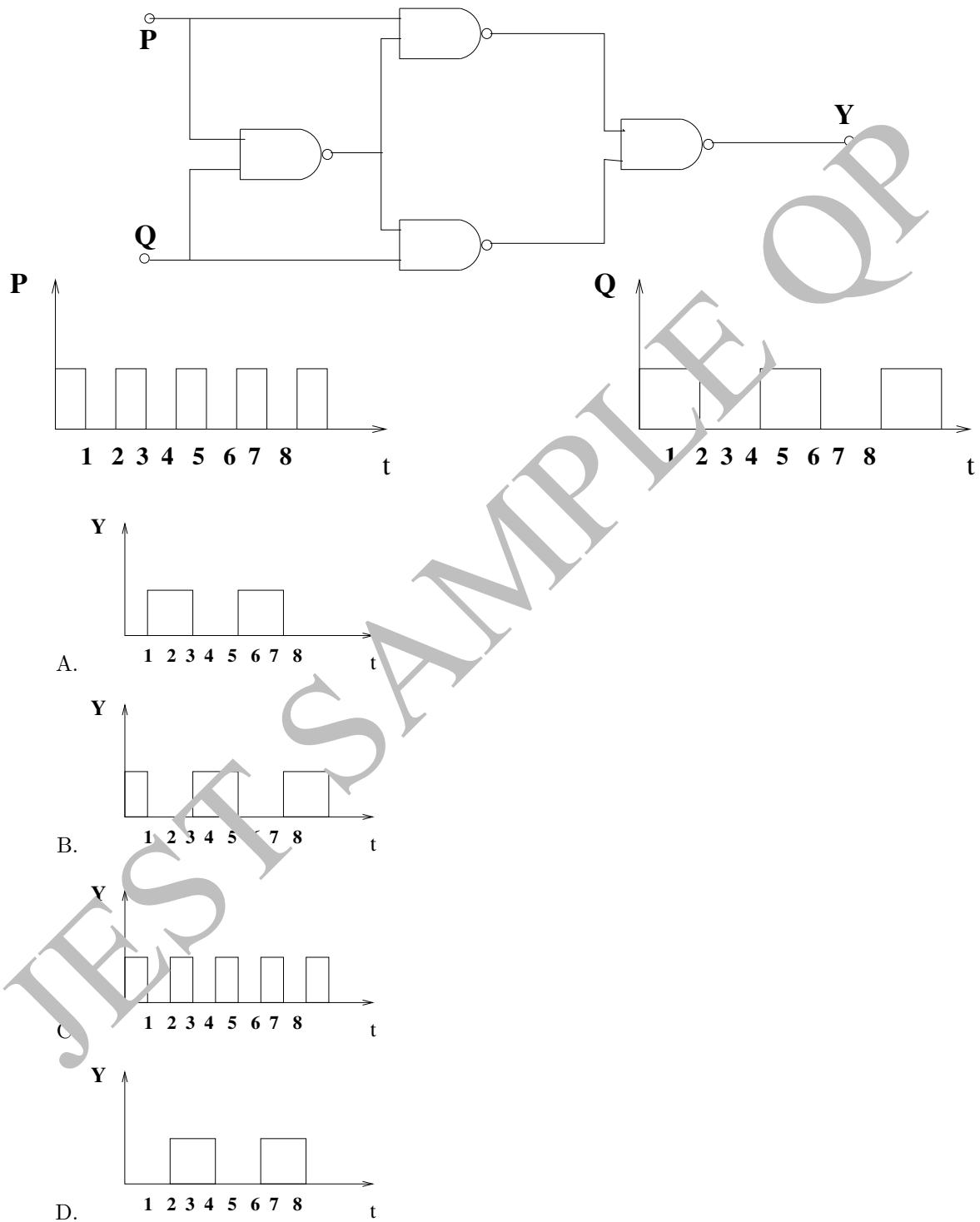
A. $7r^4$

B. $5r^4$


C. $3r^4$

D. 0

17. A particle is moving with velocity $v_x = v_y = v_z = c/2$ in frame S . The ratio of velocity component v_y to the velocity component $v_{y'}$ as measured in frame S' moving with velocity $c/2$ with respect to frame S along the common x direction is


- A. $\cos(\pi/6)$
- B. $\cos(\pi/3)$
- C. $\sin(\pi/6)$
- D. $\sin(\pi/3)$

18. A ray of light is incident on a glass cube of refractive index 1.414 as shown in the figure. Find the angle of incidence θ_i , such that the ray grazes down the side of the glass cube.

- A. $\pi/2$
- B. $\pi/3$
- C. $\pi/4$
- D. 0

19. For the circuit and the inputs P and Q shown, which of the following is the correct output Y?

20. A silicon p-n junction diode operates at 27°C . The current I is doubled when the forward bias is increased. The increase in the forward bias is closest to:

[Assume $I \gg I_s$, where I_s is the reverse saturation current and the emission coefficient $\eta_{\text{Si}} = 2$.]

A. 36 mV

B. 18 mV

C. 72 mV

D. 54 mV

Part C: 3-Mark Numerical

- Given the mass of the proton $m_p \simeq 1836 m_e$ and mass of the deuteron $m_d \simeq 3670 m_e$, where m_e is the electron mass, find the fractional shift (in parts per million, to the nearest integer) of the ground state energy of the deuterium atom as compared to H-atom.
- If a resistor of $10 \text{ k}\Omega$ and a capacitor of $0.5 \mu\text{F}$ are connected in series across an AC supply of 220 V (rms) at 50 Hz , what is the average power (in mW, to the nearest integer) dissipated in the circuit?
- The average lifetime of a muon in its rest frame is 2200 ns . What will be the average distance (in meters, to the nearest integer) travelled by it, when created with a velocity of $\frac{1}{3}c$, before it decays? Here c is the speed of light.
- What is the value of the integral

$$I = \frac{3}{2\pi} \oint_{\mathcal{C}} \frac{dz}{1+z^2}$$

where the contour \mathcal{C} is a circle of radius 2 centered at the origin?

- A simple pendulum with effective length l and a bob of mass m has a time period T_1 . Suppose now that the bob is given an electric charge $+Q$. It is made to oscillate just above a two dimensional infinite sheet with surface charge density $+ \sigma$, where $\frac{Q\sigma}{m\omega^2} = \frac{3}{2}$, ϵ_0 being the permittivity of free space and g being the acceleration due to gravity. If the period of oscillation in this case is T_2 , determine $\frac{T_2}{T_1}$. [Neglect radiation from the charge.]
- The Fraunhofer diffraction intensity pattern for light of wavelength λ by a single slit of width a is given by

$$I = A_0^2 \left(\frac{\sin \beta}{\beta} \right)^2$$

where A_0 is the intensity of the central maximum and $\beta = \frac{\pi a \sin \theta}{\lambda}$, where θ is the angle with the incident beam. What is the angular separation in milli-radians, between the two first minima on two sides of the central beam, if $a = 1 \text{ mm}$ and $\lambda = 5000 \text{ \AA}$?

- A heat engine works between a high temperature source and a sink at 27°C . If the maximum efficiency possible for it to achieve is 50%, what is the temperature of the source in $^\circ\text{C}$?
- Suppose the wave function of a free particle in one dimension obeys $\frac{d^2\psi}{dx^2} = -4\psi$ in units where $\hbar = 1$. What is the magnitude of the momentum of the particle?

9. A current of $10A$ is maintained for $1s$ in a resistor of resistance 25Ω , which is thermally insulated. The initial temperature of the resistor is 23°C . The resistor has a mass of 10 gm and a specific heat of $836 \text{ Jkg}^{-1}\text{K}^{-1}$. What is the entropy change of the resistor, rounding off to the nearest whole number in units of JK^{-1} ?

10. A 3×3 matrix M satisfies $M^2 - 3M + 2I = 0$. Find the determinant of the matrix M if its trace is 6.

JEST SAMPLE QP